













Prof. Adriano Mancini Università Politecnica delle Marche

Dott Luca Coviello Università di Trento, ENOGIS

Dott. Agr. Francesco Maria Martini Università Politecnica delle Marche

# Intelligenza Artificiale per il monitoraggio delle colture cerealicole biologiche

Bologna 9 Settembre 2022

#### Sommario

- Tecnologie a supporto della stima della resa
  - Droni
  - Satelliti
- Intelligenza Artificiale e Stima della Resa
- Conclusioni e Sviluppi Futuri



#### Overview/obiettivi

- Gestione predittiva su grano nel biologico
- Miglioramento della qualità/quantità del raccolto e della sostenibilità ambientale (efficienza tratamenti, risparmio economico)
- Monitoraggio andamento colturale e previsioni di resa (variabili/puntuali)
- Utilizzo immagini satellitari (sentinel e PlanetScope) ed Intelligenza Artificiale



#### SATs vs UAVs

- Risoluzione Temporale
  - 1-10 giorni (SATs) on-demand per il drone



- Risoluzione Spaziale
  - 2-60m (SATs) 0.025+ nel caso del drone

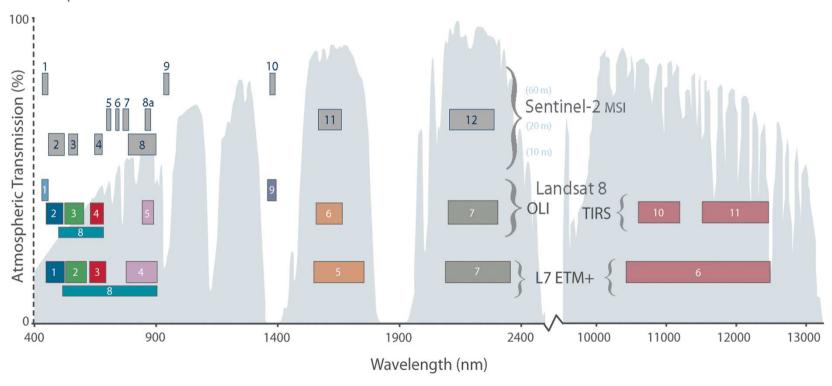


- Configurazione Spettrale
  - 4-12 bande (SATs) 4-5 bande



- Sentinel-2 / Landsat sono gratuiti. Planet gratuiti per scopi di ricerca. I costi dei dati acquisiti possono variare in modo significativo (acquisto drone, acquisto sensore, pilota, co-pilota, trasferta...
- Può essere costoso per aree di ridotta dimensione




• Uso combinato drone + SAT è la giusta *dimensione* 



#### Evoluzione Satelliti – Dal Landsat al Sentinel-2

### Open Science (anche Business)

Comparison of Landsat 7 and 8 bands with Sentinel-2



#### • Sentinel-2

• Periodo di rivisitazione: 5 giorni (caso migliore)

• GSD da 10m to 60m

• # of bande: 13

#### Landsat 8

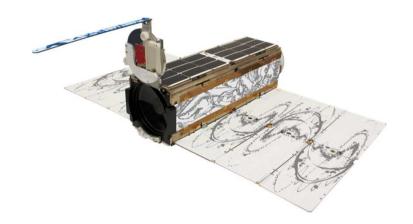
• Periodo di rivisitazione : 16 giorni

• GSD: da 15m a 100m

• # of bande: 11

| Band           | CWA    | BWA | CWB    | BWB | GSD |
|----------------|--------|-----|--------|-----|-----|
| 1 Coastal      | 442.7  | 21  | 442.2  | 21  | 60  |
| 2 Blue         | 492.4  | 66  | 492.1  | 66  | 10  |
| 3 Green        | 559.8  | 36  | 559.0  | 36  | 10  |
| Band 4 Red     | 664.6  | 31  | 664.9  | 31  | 10  |
| 5 Veg.RE       | 704.1  | 15  | 703.8  | 16  | 20  |
| 6 Veg.RE       | 740.5  | 15  | 739.1  | 15  | 20  |
| 7 Veg.RE       | 782.8  | 20  | 779.7  | 20  | 20  |
| Band 8 NIR     | 832.8  | 106 | 832.9  | 106 | 10  |
| 8A Narrow NIR  | 864.7  | 21  | 864.0  | 22  | 20  |
| 9 Water vapour | 945.1  | 20  | 943.2  | 21  | 60  |
| 10 SWIRCirrus  | 1373.5 | 31  | 1376.9 | 30  | 60  |
| 11 SWIR        | 1613.7 | 91  | 1610.4 | 94  | 20  |
| 12 SWIR        | 2202.4 | 175 | 2185.7 | 185 | 20  |




# PlanetScope

• Periodo di rivisitazione : 1-2 giorni

• GSD: 3.0-3.5m

• # of bande: 4 (RGB + NIR)

| PlanetScope bands | CW (nm) | BW | GSD (m) |
|-------------------|---------|----|---------|
| Blue              | 485     | 60 | 3       |
| Green             | 545     | 90 | 3       |
| Band - Red        | 630     | 80 | 3       |
| Band - NIR        | 820     | 80 | 3       |



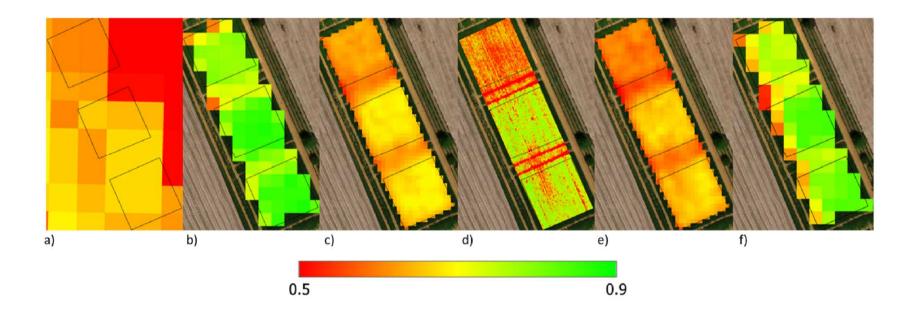


#### MSI on UAS

- 5 bande Sensore Multi Spettrale
  - Misesense RedEdge
  - Immagini radiometricamente correte (ground targets e DLS)



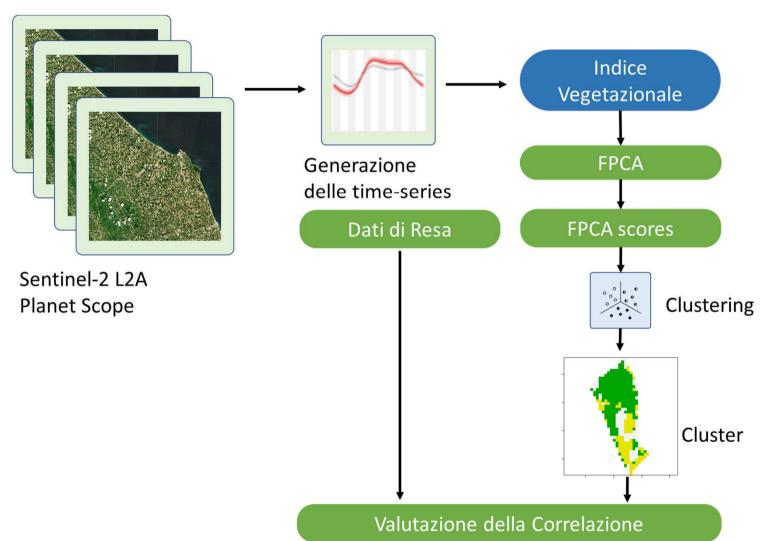
| Band     | Central wavelength (nm) | Bandwidth (nm) |
|----------|-------------------------|----------------|
| Blue     | 475                     | 20             |
| Green    | 560                     | 20             |
| Red      | 668                     | 10             |
| NIR      | 840                     | 40             |
| Red Edge | 717                     | 10             |








#### Comparazione SATs e droni

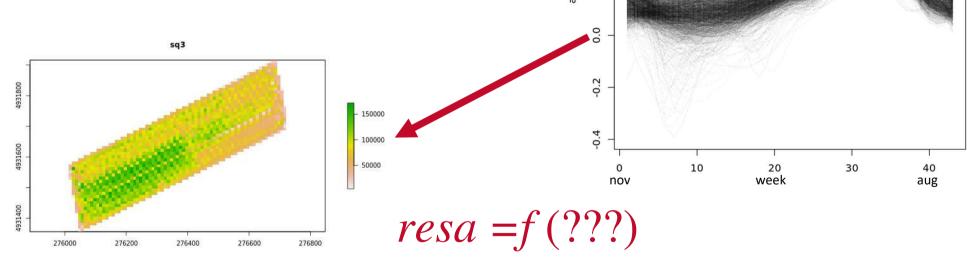

• La risoluzione gioca un ruolo chiave per identificare le aree che richiedono maggiore attenzione





#### Workflow Analisi Dati

 Per ogni nuova immagine si aggiorna la potenziale mappa di resa

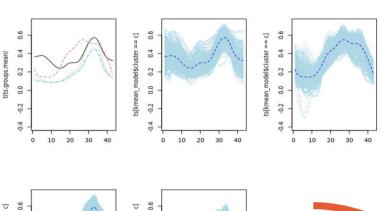


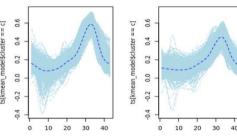


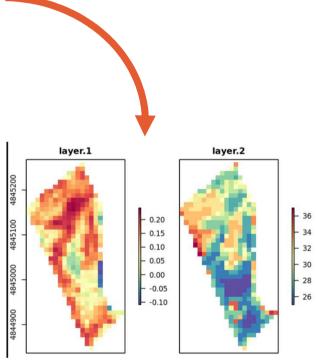

• Sentinel-2 durante tutta la stagione

- da semina a raccolta, Nov Lug
- RGB, NIR, Red Edge => NDVI, NDRE

• Dati di resa variabile/puntuale multivarietà



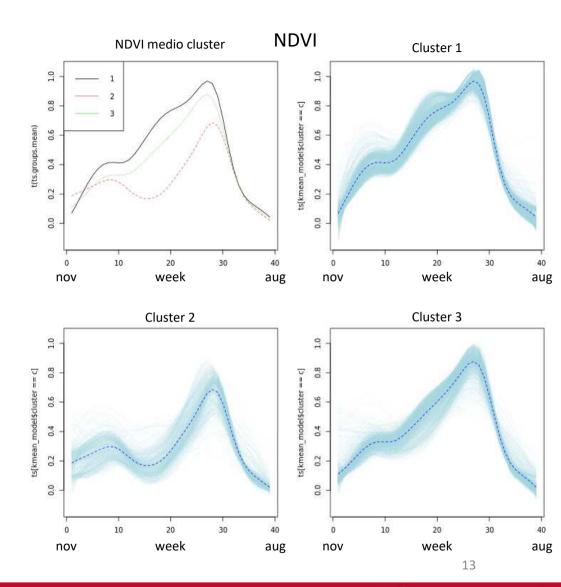


Resa (aggregata a 10m x 10m)




NDVI

- Analisi timeseries (serie temporali) indici derivati da Sentinel-2
  - NDVI, NDRE
- f-PCA (functional PCA)
  - Clustering per identificazione zone di gestione separata (management zones)
  - Correlazione con resa

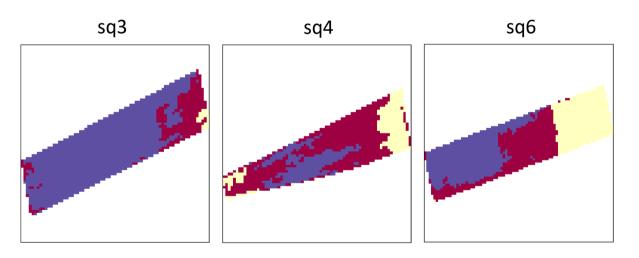


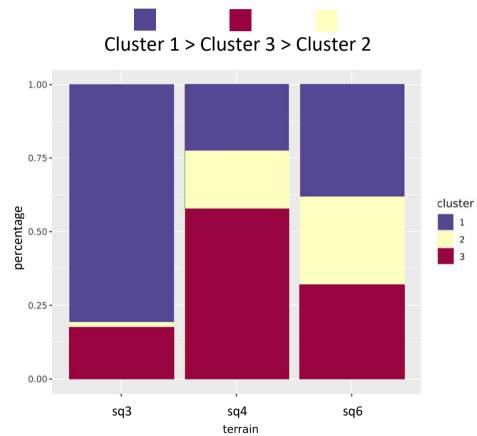







#### Clustering con fPCA


- Identificazione di 3 cluster con andamenti diversi nell'NDVI (focus su picco)
  - Input: serie immagini temporali su 3 campi di frumento
  - Cluster 1 > Cluster 3 > Cluster 2
- Ogni singola curva rappresenta un pixel delle immagini satellitari (10m x 10m)






#### Clustering per composizione campi

- Dal risultato clustering all'efficienza dei campi
  - sq3: maggior parte di punti del cluster 1 (alto)
  - sq4: maggior parte di punti del cluster 3 (medio)
  - sq6: circa 33% per cluster
- Domanda: i cluster correlano con la resa?



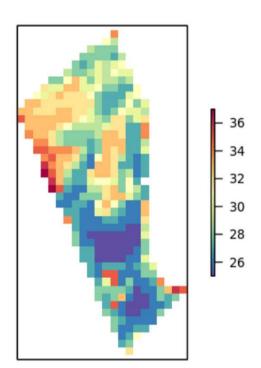




#### Questione di correlazione

- Allo stato attuale l'f-PCA (e il Clustering) viene calcolata in vari momenti e soprattuto fine stagione
- Utile per analizzare a posteriori l'andamento della stagione, o fare una comparazione tra diverse annate

• È possibile cercare di sviluppare una pipeline metodologica simile per un Clustering


predittivo?

 Sì, avendo la possibilità di «calibrare» il modello su una o più stagioni usando dati da satellite ed anche raccolti da sensori a terra bordo trebbia

|              | NDVI   |        |        |  |
|--------------|--------|--------|--------|--|
|              | w10-36 | w10-18 | w10-27 |  |
| RMSE         | 600.87 | 707.29 | 646.27 |  |
| MAE          | 459.66 | 548.90 | 499.45 |  |
| RMSE %       | 10.35  | 12.14  | 11.14  |  |
| MAE %        | 7.43   | 8.85   | 8.08   |  |
| Correlazione | 0.88   | 0.83   | 0.86   |  |



- Il monitoraggio lungo il corso della stagione consente di indentificare fin da subito l'insorgere di problemi
- Da qui la necessità di creare zone di gestione differenziate al fine di uniformare la prestazione
- Quanto ottenuto dall'analisi dei dati per generare beneficio necessita di una corretta gestione di precisione => necessità di adottare soluzione proprie dell'Agricoltura 4.0
- La stima della resa consente anche di supportare la verifica di situazioni anomale alla fine della stagione.





# Grazie per l'attenzione!

## Domande?

#### **Adriano Mancini**

Università Politecnica delle Marche, Ancona, Italy a.mancini@univpm.it

https://vrai.dii.univpm.it/



